3x^2+84=4x^2+12

Simple and best practice solution for 3x^2+84=4x^2+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+84=4x^2+12 equation:



3x^2+84=4x^2+12
We move all terms to the left:
3x^2+84-(4x^2+12)=0
We get rid of parentheses
3x^2-4x^2-12+84=0
We add all the numbers together, and all the variables
-1x^2+72=0
a = -1; b = 0; c = +72;
Δ = b2-4ac
Δ = 02-4·(-1)·72
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*-1}=\frac{0-12\sqrt{2}}{-2} =-\frac{12\sqrt{2}}{-2} =-\frac{6\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*-1}=\frac{0+12\sqrt{2}}{-2} =\frac{12\sqrt{2}}{-2} =\frac{6\sqrt{2}}{-1} $

See similar equations:

| (8+2x)-6-3x=-168 | | 56/15=8/5x | | 3960=(n-2)180 | | -40=-20+m | | -5x+2=x-1 | | -168=-3x-6(2x+8 | | 90=(x+23)=(x+13) | | 8x+5x-44=66-9x | | 8v+3({1}{3}13v-6)=9v+2v+12 | | (x+23)=(x+13)+90 | | (x+23)=(x+13)+90=180 | | 8x-5x-44=66-9 | | 10-7r=9 | | p+16=10 | | v+4.4=7.52 | | 0.12=0.1*w+((1-w)*0.14) | | 5x+7x-63=42-9x | | 44.73=4g+3.96 | | x+2.45=6.35 | | 3/4w-1/2w-4/1=12 | | 6x+9=4x+254x+25 | | 16x-10.3=34.5 | | 28+27m=42+20m | | -4s=7−3s | | -4=-p/2–10 | | -4=-p2–10 | | 4x+12-5=16 | | 3x-15+5x-23=70 | | 80=9p+7p | | 30-x=42-3x | | 7b/12+3b/14=b/3+9 | | -8j-10=-6j-2 |

Equations solver categories